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Abstract Mathematically, each Pareto optimal point is an
equally acceptable solution to a multiobjective optimization
problem (MOP). However, the process of choosing a single
preferred solution among all computed alternatives can be a
difficult task because of a high cognitive effort required. Thus,
the main objective of this work is to optimize the process of
AISI H13 hardened steel turning with PCBN wiper tool using
a robust multiple criteria decision making based on an entro-
pic measure to choose the most preferred Pareto optimal point
as the problem final solution. The responses of tool life (T),
surface roughness parameter (Ra), and the ratio between ma-
terial removal rate and cutting force (MRR/Fc) are modeled by
using the response surface methodology (RSM), using as de-
cision variables cutting speed (Vc), feed rate ( f ), and depth of
cut (d). The normal boundary intersection (NBI) method along
with the mixture design of experiments (MDE) are used to

optimize these responses simultaneously. The optimal turning
process conditions obtained were judged satisfactory since
that parameter values for cost, quality, and productivity are
acceptable. Moreover, the study was able to demonstrate that
the weights used in the multiobjective optimization process
influence the prediction variance. From the variability point
of view, the final solution obtained is the robust one, since it
leads to a region of minimum variance, less variability, and
greater reliability.

Keywords Hard turning .WiperPCBNtool .Robustmultiple
criteria decisionmaking . Normal boundary intersection .
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1 Introduction

Precision hardened steel turning, i.e., turning process for ma-
terials which are hardened above 45 HRC [1–5], has been
studied for more than 35 years [2] and, until the present mo-
ment, considerable attention has been given to its understand-
ing [3–30]. This great number of studies was carried out on
many materials and as the current state of knowledge in this
field does not allow to generalize obtained results and to pre-
dict the behavior of other materials [5], the research on the
machining of these materials is continued [11, 22].

When comparing with traditional grinding, the hard turning
process shows some advantages such as the following: it re-
duces the manufacturing costs, reduces the setup time, it is
flexible machining process, decreases production time, elimi-
nates the cooling media, improves the surface integrity, and
improves overall product quality [2–6, 8, 10, 21]. This process
is widely used in the automotive, aerospace, gear, bearing,
cam, forging, tools, and die industry [3, 5, 10, 21].
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In finish hard turning, high hardness of workpieces, large
cutting forces, and high temperatures at the cutting tool-
workpiece interface impose extreme requirements for tool ri-
gidity and tool wear resistance [21]. Due to this condition,
PCBN has proved to be better for producing precise parts than
coated micrograin carbides and ceramics [23]. PCBN is the
second hardest material known to man after diamond [24, 25]
with high hardness also at high temperatures. It has high ther-
mal stability and high thermal conductivity [26–29]. The com-
mercial PCBN tool material consists of cBN grains,
surrounded by a matrix with TiCN, Al2O3, and WC. Al is
added to the material in order to react with the oxygen present
in the material in the high-temperature, high-pressure treat-
ment during manufacturing. It is also there to promote the
sintering process [25]. The PCBN diffractogram is shown in
Fig. 1.

About the contribution of the tool geometry for the im-
provement of hard turning process, some authors present the
use of tools with wiper geometry [3, 4, 7, 10, 30]. Due to its
three radii geometry [3], as shown in Fig. 2, it is possible to
double the feed rate, increasing the productivity and also keep-
ing the surface roughness as low as possible [3, 10, 30].

The potential benefits promoted by hard turning for
surface quality and the increasing of productivity rate
depend intrinsically on an optimal setup for the process
parameters such as cutting speed (Vc), feed rate ( f ),
and depth of cut (d). These parameters are directly re-
sponsible for many of machining predictable properties
like tool wear, tool life, surface finishing, and amount
of material removed [3, 10, 14, 30].

Analyzing manufacturing processes, of which the machin-
ing process is an example, it appears that the various possibly
controlled parameters lead to multiobjective mathematical
models in order to ensure its optimization.

When working with multiobjective optimization, in addi-
tion to the search for the point that characterizes the problem

final solution, how reliable is this solution appears as a central
point. Therefore, the forecast variance is a major concern [31].
About this subject, the discussion of how the weighting in
multiobjective optimization affects the forecast variance, giv-
en a certain experimental design, was not made, making it
clear that theoretical contributions can be given to explore this
topic.

Thus, the main objective of this work is to optimize
the process of AISI H13 hardened steel turning with
PCBN wiper tool using a robust multiple criteria deci-
sion making based on an entropic measure to choose
the most preferred Pareto optimal point as the problem
final solution. The responses of tool life (T), surface
roughness parameter (Ra), and the ratio between mate-
rial removal rate and cutting force (MRR/Fc) are
modeled by using the response surface methodology
(RSM), and the normal boundary intersection (NBI)
method along with the mixture design of experiments
(MDE) are used to optimize these responses simulta-
neously. The decision variables are cutting speed (Vc),
feed rate ( f ), and depth of cut (d).

2 Design of experiments

According to Montgomery [32], an experiment can be
defined as a series of tests in which purposeful changes
are made to the input variables of a process, aiming
thereby to observe how such changes affect the re-
sponses. Design of experiments (DOE) is then defined
as the process of planning experiments so that appropri-
ate data is collected and then analyzed by statistical
methods, leading to valid and objective conclusions.

Regarding the experimental projects, the most widely used
techniques include the RSM and MDE.

RSM is a collection of mathematical and statistical tools
used to model and analyze problems in which responses of
interest are influenced by several variables. The objective of
RSM is to optimize these responses [32, 33].Fig. 1 X-ray diffraction (XRD) results from PCBN material [25]

Fig. 2 Wiper insert design: rε1 and rε2 are the radii of wiper curvature [3]
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For most industrial processes, the relationships be-
tween responses and independent variables are un-
known, so RSM seeks to find a suitable approximation
to represent the responses of interest as a function of
these variables. To describe such relationships, re-
searchers generally use polynomial functions. Thus, if
a response is well modeled by a quadratic function,
the approximate ratio can be represented by the follow-
ing second-order model:

y
∧ ¼ β

∧
0 þ

Xk

i¼1

βixi þ
Xk

i¼1

βiix
2
i þ

X
i< j

X
βijxix j þ ε ð1Þ

where y(x) is the response of interest, xi is an indepen-
dent variable, β0 is the intercept coefficient to be esti-
mated, βi is the linear coefficient to be estimated, βii is
the squared coefficient to be estimated, k is the number
of independent variables, and ε is the experimental
error.

While it is unlikely for a polynomial model to be-
have as a proper approach for the entire experimental
space covered by the independent variables, such
models have been shown to be effective for a specific
region [32, 33].

The estimation of coefficients, defined by Eq. 1, is
typically made using the ordinary least squares (OLS)
method. The OLS method is based on choosing values
for βi, such that the sum of squared errors is minimized.
The OLS function can be written as follows [32, 33]:

L ¼
Xk

i¼1

εi
2 ¼

Xk

i¼1

yi−β0−
Xk

i¼1

βixi

 !2

ð2Þ

where yi is the response of interest, xi is an independent
variable, βi is the coefficient to be estimated, k is the
number of independent variable, and εi is the experi-
mental error.

The response of interest may be written in matrix notation
as

y ¼ Xβþ ε ð3Þ

where

y ¼
y1
y2
⋮
yn

2
664

3
775;X ¼

1 x11 x12 ⋯ x1k
1 x21 x22 ⋯ x2k
⋮ ⋮ ⋮ ⋱ ⋯
1 xn1 xn2 ⋯ xnk

2
664

3
775;β ¼

β0

β1

⋮
βk

2
664

3
775; ε ¼

ε1
ε2
⋮
εn

2
664

3
775ð4Þ

Thus, L can be expressed as

L ¼ yTy−βTXTy−yTXβþ βTXTXβ

¼ yTy−2βTXTyþβTXTXβ ð5Þ

Since βTXTy is a 1 × 1 matrix, or a scalar, and its transpose
(βTXTy)T=yTXβ is the same scalar, the least squares estima-
tors must satisfy

∂L
∂β

¼ −2XTyþ 2XTXβ
∧
¼ 0 ð6Þ

which simplifies to

XTXβ
∧
¼ XTy ð7Þ

Equation 7 is the set of least squares normal equations in
matrix form. By multiplying both sides of Eq. 7 by the inverse
of XTX, we have

β
∧
¼ XTX
� �−1

XTy ð8Þ

As the least squares estimatorβ∧ is a linear combination of
the observations, it is normally distributed with mean vectorβ
and covariance matrix σ2(XTX)−1. Then, the statistic

β j
∧ −β jffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2∧ Cjj

q ; j ¼ 0; 1; :::; k ð9Þ

is distributed as twith n-p degrees of freedom, where Cjj is the

jjth element of the matrix (XTX)−1, and σ2∧ is the estimate of
the error variance, obtained from equation:

σ2
∧
¼ SSE

n−p
ð10Þ

where SSE is the residual (or error) sum of squares and is given
by

SSE ¼ yTy−βT
∧
XTy ð11Þ

Therefore, a confidence interval of 100(1−α)% for the
regression coefficient βj , j=0 , 1 , . . . , k, is given by

β j

∧
−tα=2;n−p

ffiffiffiffiffiffiffiffiffiffiffi
σ2
∧
Cjj

r
≤β j≤ β j

∧
þtα=2;n−p

ffiffiffiffiffiffiffiffiffiffiffi
σ2
∧
Cjj

r
ð12Þ

Note that this confidence interval can be written as a func-
tion of the regression coefficient standard error se β j

∧� �
:

β j

∧
−tα=2;n−pse β j

∧
� �

≤β j≤ β j

∧
þtα=2;n−pse β j

∧
� �

ð13Þ

because se β j
∧� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2∧ Cjj

q
.
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Wemay also obtain the mean response confidence interval at
a particular point X0

T=[1 x01 x02 ...x0k]. The mean response at
this point is given by μyjX0

¼ X0
Tβ, and the estimated mean

response at this point is given by y∧ X0ð Þ ¼ X0
T β∧. This esti-

mator is an unbiased one, because E y∧ X0ð Þ½ � ¼ E X0
T β∧� � ¼

X0
Tβ ¼ μyjX0

and the variance of y∧ X0ð Þ is

Var y
∧
X0ð Þ

h i
¼ σ2

∧
X0

T XTX
� �−1

X0 ð14Þ

Therefore, a confidence interval of 100(1−α)% on the
mean response at the point X0

T ¼ 1 x01 x02 … x0k½ �
is

y
∧
X0ð Þ−tα=2;n−p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
∧
X0

T XTX
� �−1

X0

r
≤μ

y

���X0

≤ y
∧
X0ð Þ

þ tα=2;n−p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
∧
X0

T XTX
� �−1

X0

r
ð15Þ

After constructing the model, the statistical signifi-
cance of the same should be verified through analysis
of variance (ANOVA). ANOVA, apart from revealing
the significance of the model as a whole, permits one
to check which of the model’s terms are significant and
which may be neglected.

The fit is represented by the coefficient of multiple deter-
mination (R2), which represents the percentage of the ob-
served data in the response that can be explained by the math-
ematical model. R2 is defined as

R2 ¼ SSR
SST

¼ 1−
SSE
SST

ð16Þ

where SSR is the regression sum of squares; SSE is the residual
(or error) sum of squares, as presented in Eq. 11; and SST is the
total sum of squares.

The regression sum of squares (SSR) may be presented as

SSR ¼ βT
∧
XTy−

Xn

i¼1

yi

 !2

n
ð17Þ

and, the total sum of squares (SST) is

SST ¼ yTy−

Xn

i¼1

yi

 !2

n
ð18Þ

In using a more accurate parameter, an adjusted R2 can be
defined as

R2
adj ¼ 1−

n−1
n−p

1−R2
� � ð19Þ

where n is the number of experiments and p is the number of
terms plus one (related to the intercept).

For the modeling of the response surface functions, the
experimental arrangement most often used for data collection
is the central composite design (CCD) [32]. CCD, for k fac-
tors, is a matrix formed by three distinct groups of experimen-
tal elements: a full factorial 2k or fractional 2k-p, where p is the
desired fraction of the experiment; a set of central points (cp);
and, in addition, a group of extreme levels called axial points,
given by 2k. The number of experiments required is given by
the sum: 2k or (k-p) + cp + 2k. In CCD, the axial points are

within a distance α of the central points, being α ¼ 2k
� �1=4

[34].
In MDE, the factors are the ingredients of a mixture and

their levels are not independent. Due to the existence of the
constraint ∑n

i¼1xi ¼ 1, the mixture models have some differ-
ences from polynomials employed in RSM. For example, the
special cubic form is [32, 35]

y ¼
Xq

i¼1

βixi þ
XXq

i< j

βijxix j

þ
X X

i< j< k

Xq
βijkxix jxk ð20Þ

According to Cornell [35] and Anderson-Cook et al. [31],
the different shape of the previous function makes it to be
called Scheffé’s polynomials or canonical polynomials of
mixtures.

The estimation of the coefficients is done in a similar way
to that used in RSM, the same occurring for statistical tests as
ANOVA.

The experimental arrangement most used in MDE is the
simplex arrangement [35]. In this, the k input variables define
points whose proportions are assumed to take into consider-
ationm + 1 equally spaced values between 0 and 1, wherem is
the lattice degree of the arrangement. The total number of
experiments (N) is given by

N ¼ k þ m−1ð Þ!
m! k−1ð Þ! ð21Þ

As in simplex arrangement, most experiments occur at the
borders of the array few points of the internal part are tested.
Due to this feature, it is important to add internal points to the
arrangements, as the central points and the axial points.

3 Multiobjective optimization

The optimization problems involving industrial processes are
often multiobjective, since they involve more than one
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desirable feature. If there is no conflict between the objective
functions, then a solution can be found where each objective
function reaches its optimum. In this case, no special method
is required [36].

However, often these goals are function of the same deci-
sion variable set and are conflicting [37]. To study the
tradeoffs between these conflicting objectives and explore
the options available, one must formulate a multiobjective
optimization problem (MOP). A general formulation may be
presented as

Min
x∈Ω

Λ ¼ F1 xð Þ; F2 xð Þ; :::; Fk xð Þf g ð22Þ

where Λ is the vector of objective functions consisting of k
criteria, Fi, which are mutually conflicting. The decision var-
iables vector, x, must belong to the feasible set Ω which usu-
ally includes the problem constraints in inequalities or equal-
ities form:

Ω ¼ x∈ℝnjgr xð Þ≤0; r∈I ; hq xð Þ ¼ 0; q∈J
� 	 ð23Þ

where gr and hq are the inequality and equality constraint
functions, respectively; I and J are the index sets containing
as many elements as there are inequality and equality con-
straints, respectively.

The multiobjective optimization methods attempt to pro-
duce a set of tradeoff solutions called Pareto optimal solutions,
of which the decision maker can choose one. A solution is
called Pareto optimal if no objective can be improved without
sacrificing the other. Methods that allow obtaining the full set
of Pareto optimal solutions should have priority in use as they
provide the decision-maker the ability to select the best solu-
tion among those considered efficient.

According to Shahraki and Noorossana [38], there are two
approaches to solve problems with more than one objective
function. The former is based on optimizing an objective con-
sidering other objectives as constraints. In this context, the
considered most important objective function is prioritized,
giving rise to the term prioritization. The latter is based on
converting all objective functions in one, by reducing it to a
scalar optimization problem; hence, the term scalarization.
Scalarization is the conversion of the problem, by aggregation
of the components of the objective functions, into a single or a
family of single objective optimization problems with a real-
valued objective function [36, 39]. Manymethods can be used
for this purpose, among which are the weighted sum method
and the normal boundary intersection (NBI) approach.

3.1 Weighted sum method

The weighted sum method is one of the most used techniques
for solving MOP. According to Zhang and Yang [40], this is

due to its relative simplicity and physical interpretation of the
processes being analyzed.

This method is characterized as a sequence of problems in
which the objective functions are converted into a scalar op-
timization problem by minimizing the objective convex com-
bination of the different objectives, i.e., the global objective
function is defined by a linear combination of the original
objective function and their respective degrees of importance
represented by the weights. In other words, n weights wi are
chosen, such that wi≥0 , i=1 , … ,n and ∑n

i¼1wi ¼ 1 and the
following problem is solved:

Min
x

Xn

i¼1

wi f i xð Þ ¼ wT F xð Þ
s:t: : hi xð Þ ¼ 0; i ¼ 1; 2; :::; l

g j xð Þ≤0; j ¼ 1; 2; :::;m

ð24Þ

where fi(x) is the n≥2 objective functions to be optimized,
hi(x) represents the l equality constraints, and gj(x) represents
the m inequality constraints.

It follows immediately that the global minimizer x* of the
above problem is a Pareto optimal point for MOP. If this is not
true, then there should be a feasible x in which one objective
could be improved without sacrificing the others [41].

A common approach is to perform the minimization de-
scribed in Eq. 24 repeatedly using an even dispersion of the
weight w in order to generate many points in the Pareto opti-
mal set. However, according to Das and Dennis [41], there are
difficulties related to this practice: (1) if the Pareto frontier is
nonconvex, there is no weight w for which the solution of the
problem remains in the nonconvex area; (2) even with a con-
vex Pareto frontier, a uniform distribution of w, does not pro-
duce a uniform distribution of points on the Pareto frontier.
Thus, even if a uniform spread of weight vectors is used, the
Pareto frontier will be neither equispaced nor evenly
distributed.

According to Shin et al. [42], a multiobjective problem is
convex if the feasible set Ω is convex and the functions are
also convex. When at least one objective function is
nonconvex, the multiobjective problem becomes nonconvex,
generating a nonconvex and even not connected Pareto fron-
tier. When working with nonconvex Pareto frontiers, points in
the concave area cannot be reached by minimizing the objec-
tives convex combination [41]. This instability is due to the
fact that the weighted sum is not a Lipshitzian function of the
weight w [43].

In RSM, one way to determine the convexity of a function
is by characterizing the nature of the stationary point. The
stationary point is the level of x1, x2, ..., xk, that optimize the
predicted response. This point, if it exists, will be the set of x1,
x2, ..., xk, for which the partial derivatives equal to zero. A
general mathematical solution for the location of the stationary
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point may be obtained. The second-order model may be
expressed in matrix notation as follows [32, 33]:

y
∧ ¼ β

∧
0 þ xTbþ xTBx ð25Þ

where

x ¼

x1

x2
⋮
xk

2
66664

3
77775
; b ¼

β
∧
1

β
∧
2

⋮
β
∧
k

2
66664

3
77775
;Β

¼
β
∧
11 β

∧
12=2 ⋯ β

∧
1k=2

β
∧
21=2 β

∧
22 ⋯ β

∧
2k=2

⋮ ⋮ ⋱ ⋮
β
∧
k1=2 β

∧
k2=2 ⋯ β

∧
kk

2
66664

3
77775
for β

∧
ij ¼ β

∧
ji ð26Þ

The derivative of y∧ with respect to the elements of the
vector x equated to zero is

∂y ∧

∂x
¼ bþ 2Bx¼0 ð27Þ

The stationary point is the solution to Eq. 26:

xs ¼ −
1

2
B−1b ð28Þ

And the predicted response at the stationary point is

y
∧
s ¼ β

∧
0 þ

1

2
xs

Tb ð29Þ

The nature of the stationary point is determined from the
sign of the eigenvalues or characteristic roots of the matrix B.
The eigenvalues (λi) of the matrix B are the solutions to the
equation:

B−λIj j ¼ 0 ð30Þ

If the λi are all negative, then the function is concave and xS
is a point of maximum; if the λi are all positive, then the
function is convex and xS is a point of minimum. However,
if the λi have different signs, the function is neither concave
nor convex and xS is a saddle point.

3.2 Normal boundary intersection

A standard method for generating the Pareto set in MOP is the
weighted sum method. However, according to Das and
Dennis [41], this method can only obtain points from all parts
of the Pareto frontier when it is convex. Furthermore, an even-
ly distributed set of weights fails to produce an even distribu-
tion of points from all parts of the Pareto frontier, even for
convex ones.

In order to overcome the drawbacks of the weighted sum
method, Das and Dennis [44] proposed the NBI method,
showing that the Pareto surface is evenly distributed indepen-
dent of the relative scales and convexity of the objective
functions.

The establishment of the payoff matrix Φ is the first step of
this method. In matrix notation, Φ can be written as follows
[43, 45]:

Φ ¼

f *1 x*1
� �

⋯ f 1 x*i
� �

⋯ f 1 x*m
� �

⋮ ⋱ ⋮
f i x

*
1

� �
⋯ f *i x*i

� �
⋯ f i x

*
m

� �
⋮ ⋱ ⋮

f m x*1
� �

⋯ f m x*i
� �

⋯ f *m x*m
� �

2
66664

3
77775

ð31Þ

Each row of Φ consists of minimum and maximum values
of the ith objective function fi(x). These values can be used to
normalize the objective functions, generating the normalized
payoff matrix Φ . This procedure is used when the objective
functions are written in different units and can be expressed as
follows [43]:

f xð Þ ¼ f i xð Þ− f Ui
f Ni − f

U
i

; i ¼ 1 ; … ; m ð32Þ

where fi(x) is the individual values of the objectives, f
U
i is the

Utopia point, and f Ni is the Nadir point.
The Utopia point is a specific point, generally outside of the

feasible region, that corresponds to all objectives simulta-
neously being at their best possible values and may be written

as f U ¼ f *1 x*1
� �

;…; f *i x*i
� �

;…; f *m x*m
� �
 �

T . Nadir point is a
point in the design space where all objectives are simulta-
neously at their worst values and may be written as

f N ¼ f N1 ;…; f Ni ;…; f Nm

 �T

.
The convex hull of individual minimum (CHIM) is com-

prised by the convex combinations of each row of Φ . The
anchor points which correspond to the solution of single op-

timization problem f *i x*i
� �

are connected by the Utopia line
[45]. If Φwi is a point in the CHIM, e is a column vector of
ones and D is the distance between the Utopia line and the
Pareto frontier, the intersection point between the normal with
Φw−DΦe representing the set of points on that normal and the
boundary of the feasible region corresponds to the maximiza-
tion of D. Thus, the NBI method is used to solve the MOP,
using the following equation [44]:

Max
x;Dð Þ

D

s:t: : Φw−DΦe ¼ F xð Þ
x ∈ Ω

ð33Þ

where w is the convex weighting, D is the distance between
the Utopia line and the Pareto frontier, F xð Þ is the vector
containing the individual values of the normalized objectives
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in each run, e is a column vector of ones, and Φ is the normal-
ized payoff matrix.

This problem can be solved iteratively for different values
of w, creating a Pareto frontier uniformly distributed [43, 46].

A common choice for w is wn ¼ 1−∑n−1
i¼1wi [44, 47].

4 Weighting methods applied to multiobjective
optimization

When trying to solve a MOP, we are interested in finding
efficient solutions. Efficiency is a concept equivalent to the
Pareto optimality, noninferiority, and nondominance.
However, usually, there are many efficient solutions (an infi-
nite number), forming the efficient set or Pareto optimal set
[36]. According to Mela et al. [48], the process of generating
Pareto optimal alternatives is called multiobjective
optimization.

Mathematically, each Pareto optimal point is an equally
acceptable solution to a MOP [36], generally being desirable
to obtain a point as the final solution. However, due to the
multidisciplinary nature of the problems related to machining
processes which are closely related to several multiple criteria
noncommensurable, to determine which solution is the best
choice to be implemented can be a difficult task. According to
Mela et al. [48], the process of choosing a single preferred
solution among all computed alternatives is called multiple
criteria decision making.

Since it is difficult to know the importance degree to be
assigned to each objective [49], the weight definition for each
function is eventually made subjectively influenced by the
analyst’s preferences. By assigning different weights to the
representative objective functions of the processes character-
istics that we want to optimize, we consider the relative im-
portance of each parameter within the analyzed process. This
means that weights should be assigned to functions to indicate
their relative importance in order to identify what really mat-
ters during the optimization process, thus electing priorities
[50].

The priority assigned to the criteria has vital role in
achieving results and should be applied with caution,
since the end result can vary significantly depending
on the importance attached to each objective [51–53].
This can be a problem, because decision makers often
are not sure about the exact weights of objective func-
tions either utility functions to be used [51]. Indeed, to
elicit direct preference information from the analyst can
be counterproductive in real-world decision-making be-
cause of a high cognitive effort required [54].

According to Taboada et al. [51], the Pareto set in-
cludes all rational choices, among which the decision
maker must select the final solution, comparing the

several objectives against each other. The search is,
therefore, not by an optimal solution but a set of solu-
tions that are optimal in the widest sense, i.e., they are
Pareto optimal. There are several techniques to search
on solution space a set of Pareto optimal solutions.
Probably, the main drawback of these methods is that
the decision maker has many solutions from which to
choose. Thus, it is necessary to bridge the gap between
the unique solutions and Pareto optimal sets [51].

The weighting issue has been discussed in literature
for at least 40 years. Zeleny [55, 56], when solving a
linear multiobjective optimization problem, aimed to an-
swer the following questions: Which of generated
nondominated extreme solutions is the most preferred?
Can the set of nondominated solutions be reduced so it
would consist of few enough points so that the final
decision could be made? To answer such questions,
the author uses what he called “traditional entropy mea-
sure” as a parameter to gauge the functions importance
and to define the weights to be used in solving the
problem.

Recently, Rocha et al. [57, 58] used Shannon entropy index
[59] associated with an error measure, the global percentage
error (GPE), in order to determine the most preferred Pareto
optimal point in a vertical turning MOP solved by NBI meth-
od. According to the authors, Shannon’s entropy can provide a
more reliable assessment of the relative weights for the objec-
tives in the absence of the decisionmaker’s preferences and, in
association with an error measure, it minimized the error of the
preferred Pareto optimal point related to the individual optimal
responses. The weighting metric ξ, proposed by Rocha et al.
[57, 58], is obtained using the equation

Max ξ ¼ Entropy

GPE

s:t: :
Xn

i¼1

wi ¼ 1

0 ≤ wi≤ 1

ð34Þ

where wi is the weight assigned to the objectives to be
optimized.

The Entropy in Eq. 34 is calculated as follows [59]:

Entropy ¼ −
Xm

i¼1

wilnwi ð35Þ

And the GPE in Eq. 34 is calculated as follows [60]:

GPE ¼
Xm

i¼1

y*i
T i

−1
����

���� ð36Þ

where y*i is the value of the Pareto-optimal responses, Ti is the
defined target, and m is the number of objectives.
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5 Experimental design and robust multiple criteria
decision making

To carry out this work, dry turning tests of the AISI H13 steel,
with chemical composition of 0.40% C, 0.35%Mn, 1.0 % Si,
5.25 % Cr, 1.00 % V, and 1.50 %Mo, were performed using a
CNC lathe with maximum rotational speed of 4500 rpm and
power of 18 kW. The workpieces used in the turning process
were made with dimensions of Ø 50 mm × 100 mm. All of
them were previously quenched in a vacuum atmosphere at
1000–1040 °C and tempered. After this heat treatment, an
average hardness of 54 ± 1 HRC was obtained. Wiper
PCBN (cBN + TiC) inserts, Ref. PCBN7025 (ISO code-
CNGA 120408 S01030 AWG), were used to machining of
AISI H13 hardened steel. The tool holder used in the experi-
ments presented a negative geometry with ISO code DCLNL
2020K12 and entering angle χr=95º. Figure 3 represents the
cutting tool and the turning process of AISI H13 hardened
steel used in the experimental study.

The measurement of surface roughness parameter (Ra) on
finish turning surfaces was made by a stylus instrument in
accordance to ISO/DIS 4287/1E. In hard turning, the cutting
tool is subjected to higher temperature and pressure near the
nose, resulting in formation of flank and crater wear. The
evaluation of the flank tool wear was made by a toolmaker’s
microscope with 30× magnification and 1-μm resolution. The
admissible flank wear (VB = 0.30 mm) was established ac-
cording ISO 3685 standard andmeasured at corner radius with
scanning electron microscopy (SEM) after each run. Figure 4
shows the flank and crater wear of cutting tool.

The acquisition of the cutting force (Fc) was performed by
a piezoelectric dynamometer. The values were continuously
monitored and recorded throughout the test by using a charge
amplifier with data acquisition capability. The material remov-
al rate (MRR) is calculated as the volume of material removed
divided by the time taken to remove it. By using the ratio
MRR/Fc, a productivity parameter can be defined, in the same
way of the specific cutting energy. However, in the case of the
ratio MRR/Fc, the maximization is desirable.

Adopting this experimental condition, the workpieces were
machined using the range of parameters as defined in Table 1.
The decision variables have been analyzed in a coded way in
order to reduce the variance. Only at the end of the analyses
they have been converted to their uncoded values, by using

X uncoded ¼ Hiþ Lo
2

þ X coded
Hi−Lo

2
ð37Þ

where Hi is related to the value of level +1 and Lo is related to
the value of level −1.

A sequential set of experimental runs was established using
a CCD built according to a response surface design 23, with 6
axial points and 5 center points, generating 19 experiments
(Table 2).

In order to optimize T, Ra, and MRR/Fc at the same time,
the multiple criteria decision making process described in
Rocha et al. [58] has been used. It aims to build an evenly
distributed Pareto frontier and to choose one preferred Pareto
optimal point as the final solution of the problem. In this
process, as the NBI method has been used, there exists no
drawback related to weighted sum method. Furthermore, in
order to verify the robustness of the final result obtained with
the employed multiobjective optimization process, a metric of
variance has been calculated. According to Zahran et al. [61],
several measures of prediction performance exist for compar-
ing experimental designs, being the scaled prediction variance
(SPV) the most commonly considered. SPV is defined as

NVar y∧ X0ð Þ½ � =σ2 ¼ NX0
T XTX
� �−1

X0, where N is the total
sample size. However, if direct comparisons between the ex-
pected variance of estimation is desired, the unscaled predic-
tion variance (UPV) could bemodeled directly by the variance
of the estimated mean response divided by σ2: Var y∧ X0ð Þ½ �
=σ2 ¼ X0

T XTX
� �−1

X0. It is equivalent to the hat matrix [33].
The step-by-step procedure is described as follows:

Step 1. DOE: It is the establishment of the experimental

design and execution of experiments in random

order.

 
(a) Wiper PCBN 7025 tool         (b) Hard turning process 

Fig. 3 Hard turning process with
wiper PCBN tool. aWiper PCBN
7025 tool. b Hard turning process
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Step 2. Objective functions modeling: It is the equations
definition using experimental data.

Step 3. MOP formulation: The NBI method is used to solve
the MOP, using Eq. 33.

Step 4. Mixture design definition: In order to set the weights
to be used in the optimization routine described in
Step 3, a mixture design is done using Minitab® 16.

Step 5. MOP solution: The optimization problem of step 3 is
solved for each experimental condition defined in
step 4.

Step 6. Calculation of weighting metrics and UPV:
Weightingmetric ξ, Entropy, andGPE are obtained
using, respectively, Eqs. 34, 35, and 36, and UPV is
equal to X0

T(XTX)−1X0.
Step 7. Metrics modeling: The canonical polynomial of mix-

tures is calculated for described metrics using the
step 6 calculation results.

Step 8. Optimal weights definition: The metric that leads to
the response with the smallest variance is used in
order to achieve the optimal weights.

As algorithms are used for the solution of MOP, the limi-
tations inherent in these algorithms will always be present. In
the current study, the generalized reduced gradient (GRG)
algorithm is used by the Excel® Solver function to solve the
problem.

6 Results and discussions

The analysis of experimental data shown in Table 2 generated
the mathematical modeling presented in Table 3.

Themodels’ adequacy has been checked with the ANOVA.
When the null hypothesis (H0) is rejected, it means that at least
one of the decision variables contributes significantly to the
function [32, 33]. In ANOVA, small p values are desirable.
The p values for the analyzed objective functions show a
statistically significant regression at 5 % level of significance,
proving the functions’ adequacy. On the terms, it draws atten-
tion the statistical significance of the interaction terms Vc × f,
Vc × d, and f × d. It proves the synergistic effect between
cutting speed (Vc), feed rate ( f ), and depth of cut (d) in the
productivity parameter MRR/Fc.

The coefficient of multiple determination (R2) represents
the percentage of the observed data in the response that can
be explained by the mathematical model. In this case, R2

values show that the models have a good adjustment. The T
has shown the worst R2, 90.56 %. Even so, this value is con-
sidered acceptable [32, 33].

In order to compare how each decision variable affects
each response, the main effect plots for T, Ra, and MRR/Fc
are shown in Fig. 5.

According to this analysis, Vc is the most significant factor
in decreasing T. Vc is also an important factor when analyzing
MRR/Fc, but in an opposite way. By increasing the Vc, the
MRR/Fc is increased. The behavior of these responses related
to the variation in Vc shows the conflicting nature of the ob-
jectives. Seeking to increase productivity, an increase in Vc
values can drastically decrease the T, increasing the process
cost, since the price of the cutting tool is very significant for
the cost of operation. Concerning to Ra, the larger Vc, the
smaller the Ra. This result is in accordance to that presented
by other authors when turning other hard materials with wiper
tools [3, 10, 30]. The variable f is the most significant for Ra

Fig. 4 SEM images of the flank
and crater wear of cutting tool

Table 1 Parameters used in the
experiments Factors Symbol Levels

−1.682 −1 0 1 1.682

Cutting speed (m/min) Vc 57.38 100 162.5 225 267.62

Feed rate (mm/rev) f 0.06 0.10 0.16 0.22 0.26

Depth of cut (mm) d 0.09 0.15 0.24 0.33 0.39
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variation similar to the results described by Paiva et al. [10].
By increasing the f above 0.16 mm/rev, Ra increases consid-
erably which shows that even for a tool with wiper geometry f
cannot be increased discretionarily. When analyzing only f, it
is observed that in order to increase MRR/Fc, Ra would be
jeopardized. Regarding the variable d, its influence is higher
to MRR/Fc. When using the maximum value of d, the values
of T and MRR/Fc increase and Ra decreases, making it clear
that there is no conflict between the responses to this variable,
since the aim is to maximize T and MRR/Fc and to minimize
Ra.

Figure 6 shows the response surfaces for T, Ra, and MRR/
Fc.

Figure 6 confirms the conflicting nature of the objec-
tives. While an increase in Vc causes an increase in
MRR/Fc, it causes a decrease in T. Moreover, an in-
crease in f causes an increase in MRR/Fc and it causes
an increase in Ra.

In order to check the functions’ convexity, before
performing the multiobjective optimization, the nature
of the stationary point is analyzed by using Eq. 30.
For T, the eigenvalues (λi) are [2.3249; −2.0424;
0.6696], i.e., the different eigenvalue signs indicate that
the function is neither concave nor convex and the sta-
tionary point is a saddle point. For Ra, the eigenvalues
(λi) are [0.0739; 0.0348; 0.0046], i.e., the positive signs
of eigenvalues indicate that the function is convex and
the stationary point is a point of minimum. For MRR/
Fc, the eigenvalues (λi) are [0.0059; −0.0016; −0.0015],
i.e., the different eigenvalues signs indicate that the
function is neither concave nor convex and the station-
ary point is a saddle point. The analysis of the nature of
the stationary point reveals that the functions have dif-
ferent convexities and, because of that, the weighted
sum method for multiobjective optimization is not the
most suitable, according to Das and Dennis [41]. Thus,
in this work, the NBI method is used. It is important to
mention that Tables 1 and 3 are equivalent to steps 1
and 2 of the multiple criteria decision-making process,
respectively, being the NBI method used in step 3,

Table 2 CCD for T, Ra, and
MRR/Fc Number Vc (m/min) f (mm/rev) d (mm) T (min) Ra (μm) MRR/Fc (cm3/N min)

1 −1 −1 −1 70.00 0.13 0.00438

2 +1 −1 −1 35.00 0.09 0.01416

3 −1 +1 −1 57.00 0.52 0.00778

4 +1 +1 −1 32.50 0.26 0.03115

5 −1 −1 +1 67.00 0.14 0.00739

6 +1 −1 +1 33.00 0.12 0.03011

7 −1 +1 +1 55.00 0.48 0.01634

8 +1 +1 +1 31.50 0.45 0.06725

9 −1.682 0 0 63.00 0.29 0.00450

10 +1.682 0 0 28.25 0.15 0.04608

11 0 −1.682 0 42.50 0.12 0.00687

12 0 +1.682 0 44.50 0.54 0.02879

13 0 0 −1.628 54.50 0.15 0.00703

14 0 0 +1.682 51.50 0.15 0.02822

15 0 0 0 46.50 0.15 0.01871

16 0 0 0 45.50 0.16 0.01881

17 0 0 0 47.50 0.14 0.01877

18 0 0 0 47.00 0.17 0.01888

19 0 0 0 46.50 0.16 0.01869

Table 3 Mathematical models for objective functions

Terms T (min) Ra (μm) MRR/Fc (cm3/N min)

Constant 46.592 0.155 0.01870

Vc −12.846 −0.042 0.01294

f −1.877 0.142 0.00757

d −0.955 0.014 0.00727

Vc2 −0.301 0.030 0.00273

f2 −1.053 0.069 0.00009

d2 2.306 0.005 0.00002

Vc × f 2.625 −0.029 0.00522

Vc × d 0.250 0.031 0.00506

f × d 0.250 0.014 0.00321

p Value 0.000 0.000 0.000

Adjusted R2 (%) 90.56 % 92.71 % 97.21 %

Values in bold represent significant terms in the model (p value <5 %)
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MOP formulation, as described in Sect. 5. To implement
the optimization routine described in step 3, initially, the
payoff matrix was estimated obtaining the results report-
ed in Table 4.

The results in Table 4 are obtained by the individual
maximization of the mathematical models for T, Ra, and
MRR/Fc. It is possible to see that in the MRR/Fc max-
imum response, T and Ra values are the worst ones.

Once step 3 has been implemented, a mixture design
for the weights of each objective function (step 4) was
defined. Subsequently, the solution of the optimization
problem of step 3 was obtained for each experimental
condition defined by the mixture design (step 5). Based
on these results, weighting metric ξ and UPV have been
calculated (step 6). The results are shown in Table 5,
where w1, w2, and w3 are the weights of T, Ra, and
MRR/Fc, respectively.

The results presented in Table 5 comprise the Pareto
optimal set for the multiobjective problem. By changing
the weights or the degree of importance assigned to
each response, the results of the optimization process
are altered, favoring the response with the highest
weight. The utilization of MDE along with the NBI
method makes it easier to define a Pareto frontier with

evenly distributed solutions, regardless of the convexity
of the functions. Once again, it is clear that the con-
flicting nature of the responses as T and MRR/Fc are
negatively affected when minimizing Ra. Regarding the
values of UPV, it is important to note that the values
are changed with the change in the results of the opti-
mization process, i.e., the prediction variance behavior
is related to the weighting. This result confirms that the
robustness of the optimization process is associated with
the choice of the Pareto optimal point as the final so-
lution for the MOP. Table 6 presents an analysis using
Pearson correlation between the values of the metrics
presented in Table 5. p Values less than 5 % indicate
statistically significant correlations.

The Pearson correlation analysis showed that the
weighting metric ξ has negative and statistically signif-
icant correlation with UPV, i.e., by maximizing this
metric, the variance values tend to be lower. This infor-
mation provides us with evidence that the search for the
most preferred Pareto optimal point in multiobjective
optimization using this metric leads to a robust response
from the variability point of view.

Step 7 involves the modeling of metrics from the
data presented in Figs. 7, 8, 9, and 10 and Table 5.
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Thus, their canonical polynomials of mixture, response
surfaces, and contour plots are as follows:

Entropy ¼ −0:0074w1−0:0074w2−0:0074w3

þ 2:7705w1w2 þ 2:7705w1w3

þ 2:7705w2w3 þ 5:4207w1w1w2w3

þ 5:4207w1w2w2w3 þ 5:4207w1w2w3w3

þ 1:4619w1w2 w1−w2ð Þ2

þ 1:4619w1w3 w1−w3ð Þ2

þ 1:4619w2w3 w2−w3ð Þ2 ð38Þ

GPE ¼ 3:6073w1 þ 1:2343w2 þ 4:8560w3

þ 0:3807w1w3 w1−w3ð Þ−2:3481w1w1w2w3

þ 0:9104w1w2w2w3 þ 1:0900w1w2w3w3

þ 0:6818w1w3 w1−w3ð Þ2 ð39Þ

ξ ¼ −0:0047w1 þ 0:0144w2−0:0077w3 þ 1:1146w1w2

þ 0:6686w1w3

þ 0:8752w2w3− 0:6308w1w2 w1−w2ð Þ
þ 0:0866w1w3 w1−w3ð Þ þ 0:6337w2w3 w2−w3ð Þ
þ1:8988w1w1w2w3 þ 1:1581w1w2w2w3

þ 0:8336w1w2w3w3 þ 0:8713w1w2 w1−w2ð Þ2

þ 0:3672w1w3 w1−w3ð Þ2 þ 0:9321w2w3 w2−w3ð Þ2 ð40Þ

Table 4 Payoff matrix
for the objective
functions

T Ra MRR/Fc

69.5370 0.2267 0.0064

39.5259 0.0613 0.0118

31.0776 0.3251 0.0633

Bold values represent individual
optimums
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Table 5 Mixture design
Weights T Ra MRR/Fc Entropy GPE ξ UPV

w1 w2 w3

1.000 0.000 0.000 69.5370 0.2267 0.0064 0.0000 3.5992 0.0000 0.6073

0.900 0.100 0.000 67.2736 0.2102 0.0069 0.3251 3.3531 0.0969 0.5258

0.900 0.000 0.100 65.6911 0.2366 0.0065 0.3251 3.8135 0.0852 0.4173

0.800 0.200 0.000 63.5348 0.1936 0.0068 0.5004 3.1380 0.1595 0.3095

0.800 0.100 0.100 62.6900 0.2200 0.0068 0.6390 3.5809 0.1785 0.2724

0.800 0.000 0.200 61.8451 0.2464 0.0108 0.5004 3.9604 0.1263 0.6073

0.700 0.300 0.000 60.5337 0.1771 0.0080 0.6109 2.8928 0.2112 0.2347

0.700 0.200 0.100 59.6889 0.2035 0.0132 0.8018 3.2542 0.2464 0.4513

0.700 0.100 0.200 58.8440 0.2299 0.0173 0.8018 3.6310 0.2208 0.6073

0.700 0.000 0.300 56.0302 0.2562 0.0234 0.6109 4.0053 0.1525 0.6073

0.600 0.400 0.000 57.5326 0.1605 0.0086 0.6730 2.6574 0.2533 0.1950

0.600 0.300 0.100 56.6877 0.1869 0.0137 0.8979 3.0188 0.2975 0.2442

0.600 0.200 0.200 55.8430 0.2133 0.0188 0.9503 3.3801 0.2811 0.3627

0.600 0.100 0.300 54.9981 0.2397 0.0240 0.8979 3.7415 0.2400 0.5131

0.600 0.000 0.400 54.1533 0.2661 0.0277 0.6730 4.1261 0.1631 0.6073

0.500 0.500 0.000 54.5315 0.1440 0.0091 0.6931 2.4220 0.2862 0.1990

0.500 0.400 0.100 53.6866 0.1704 0.0142 0.9433 2.7833 0.3389 0.1870

0.500 0.300 0.200 52.8418 0.1968 0.0194 1.0297 3.1447 0.3274 0.2206

0.500 0.200 0.300 51.9970 0.2232 0.0245 1.0297 3.5061 0.2937 0.2969

0.500 0.100 0.400 51.1522 0.2495 0.0297 0.9433 3.8674 0.2439 0.4069

0.500 0.000 0.500 50.3073 0.2759 0.0348 0.6931 4.2288 0.1639 0.5460

0.400 0.600 0.000 51.5303 0.1275 0.0096 0.6730 2.1865 0.3078 0.2320

0.400 0.500 0.100 50.6856 0.1538 0.0148 0.9433 2.5479 0.3702 0.1933

0.400 0.400 0.200 49.8407 0.1802 0.0199 1.0549 2.9093 0.3626 0.1860

0.400 0.300 0.300 48.9959 0.2066 0.0251 1.0889 3.2706 0.3329 0.2048

0.400 0.200 0.400 48.1511 0.2330 0.0302 1.0549 3.6320 0.2905 0.2580

0.400 0.100 0.500 47.3062 0.2594 0.0354 0.9433 3.9934 0.2362 0.3437

0.400 0.000 0.600 46.4614 0.2858 0.0405 0.6730 4.3547 0.1545 0.4601

0.300 0.700 0.000 48.5292 0.1109 0.0102 0.6109 1.9511 0.3131 0.3613

0.300 0.600 0.100 47.6844 0.1373 0.0153 0.8979 2.3124 0.3883 0.1931

0.300 0.500 0.200 46.8396 0.1637 0.0205 1.0297 2.6738 0.3851 0.1951

0.300 0.400 0.300 45.9948 0.1901 0.0256 1.0889 3.0352 0.3588 0.1860

0.300 0.300 0.400 45.1500 0.2164 0.0308 1.0889 3.3965 0.3206 0.1988

0.300 0.200 0.500 44.3051 0.2428 0.0359 1.0297 3.7579 0.2740 0.2413

0.300 0.100 0.600 43.4603 0.2692 0.0411 0.8979 4.1193 0.2180 0.3151

0.300 0.000 0.700 42.6155 0.2956 0.0462 0.6109 4.4806 0.1363 0.4202

0.200 0.800 0.000 45.5281 0.0944 0.0111 0.5004 1.7103 0.2926 0.6073

0.200 0.700 0.100 44.6833 0.1208 0.0159 0.8018 2.0770 0.3860 0.1886

0.200 0.600 0.200 43.8385 0.1471 0.0210 0.9503 2.4384 0.3897 0.1962

0.200 0.500 0.300 42.9937 0.1735 0.0262 1.0297 2.7997 0.3678 0.1908

0.200 0.400 0.400 42.1488 0.1999 0.0313 1.0549 3.1611 0.3337 0.1863

0.200 0.300 0.500 41.3040 0.2263 0.0365 1.0297 3.5225 0.2923 0.2016

0.200 0.200 0.600 40.4592 0.2527 0.0416 0.9503 3.8838 0.2447 0.2443

0.200 0.100 0.700 39.6143 0.2791 0.0468 0.8018 4.2452 0.1889 0.3175

0.200 0.000 0.800 38.7695 0.3054 0.0519 0.5004 4.6066 0.1086 0.4230

0.100 0.900 0.000 42.5270 0.0778 0.0113 0.3251 1.4802 0.2196 0.2657

0.100 0.800 0.100 41.6822 0.1042 0.0164 0.6390 1.8415 0.3470 0.3002

0.100 0.700 0.200 40.8374 0.1306 0.0216 0.8018 2.2029 0.3640 0.1862
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UPV ¼ 0:4942w1 þ 0:5877w2

þ 0:5683w3−1:2329w1w2−1:5102w2w3

þ 1:1778w1w3 w1−w3ð Þ−4:1337w1w2w2w3 ð41Þ

It should be noted that all canonical polynomials of
mixture had good fitness, since almost all have R2 close
to 100 %. The metric of variance, UPV, has shown the
worst R2, 79.66 %. Even so, this value is considered
acceptable [32, 33]. Something that draws attention in
this analysis is the fact that it was possible to model the

Table 5 (continued)
Weights T Ra MRR/Fc Entropy GPE ξ UPV

w1 w2 w3

0.100 0.600 0.300 39.9926 0.1570 0.0267 0.8979 2.5643 0.3502 0.1878

0.100 0.500 0.400 39.1477 0.1834 0.0319 0.9433 2.9256 0.3224 0.1860

0.100 0.400 0.500 38.3029 0.2097 0.0370 0.9433 3.2870 0.2870 0.1924

0.100 0.300 0.600 37.4581 0.2361 0.0422 0.8979 3.6484 0.2461 0.2190

0.100 0.200 0.700 36.6132 0.2625 0.0473 0.8018 4.0098 0.2000 0.2728

0.100 0.100 0.800 35.7684 0.2889 0.0525 0.6390 4.3711 0.1462 0.3577

0.100 0.000 0.900 34.9236 0.3153 0.0576 0.3251 4.7325 0.0687 0.4766

0.000 1.000 0.000 39.5259 0.0613 0.0118 0.0000 1.2447 0.0000 0.6073

0.000 0.900 0.100 38.6811 0.0842 0.0170 0.3251 1.5495 0.2098 0.6073

0.000 0.800 0.200 37.8363 0.1140 0.0221 0.5004 1.9675 0.2543 0.2612

0.000 0.700 0.300 36.9914 0.1404 0.0273 0.6109 2.3288 0.2623 0.1963

0.000 0.600 0.400 36.1466 0.1668 0.0324 0.6730 2.6902 0.2502 0.1918

0.000 0.500 0.500 35.3018 0.1932 0.0376 0.6931 3.0516 0.2271 0.2000

0.000 0.400 0.600 34.4569 0.2196 0.0427 0.6730 3.4129 0.1972 0.2242

0.000 0.300 0.700 33.6121 0.2460 0.0479 0.6109 3.7743 0.1618 0.2720

0.000 0.200 0.800 32.7673 0.2723 0.0530 0.5004 4.1357 0.1210 0.3490

0.000 0.100 0.900 31.9225 0.2987 0.0582 0.3251 4.4970 0.0723 0.4597

0.000 0.000 1.000 31.0776 0.3251 0.0633 0.0000 4.8584 0.0000 0.6073

0.333 0.333 0.333 46.7135 0.2044 0.0272 1.0986 3.2341 0.3397 0.1919

0.667 0.167 0.167 58.1253 0.2155 0.0168 0.8676 3.4166 0.2539 0.4824

0.167 0.667 0.167 43.1197 0.1328 0.0195 0.8676 2.2394 0.3874 0.1880

0.167 0.167 0.667 38.8955 0.2647 0.0452 0.8676 4.0463 0.2144 0.2720

Table 6 Pearson
correlation Entropy GPE ξ

GPE −0.003
0.980

ξ 0.803 −0.530
0.000 0.000

UPV −0.635 0.312 −0.715
0.057 0.008 0.000

w1
1
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0.00

1.00
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EntropyFig. 7 Entropy response surface
and contour plot
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metric of variance, UPV, in terms of weights. This is
because the weights interfere in the solution space.
However, since optimization of distinct functions are
performed simultaneously, the solution space is not the
same initial area of the DOE and therefore, when
modeling the variance, its shape is distinguished from
the hat matrix shape.

Lastly, step 8 was executed. By the maximization of
ξ, described in Eq. 40, the weights w1, w2, and w3,
related to the final solution were found. The values
are w1 = 0.2352, w2 = 0.5942, and w3 = 0.1706.
These optimal weights were used in a multiobjective
optimization of T, Ra, and MRR/Fc, reaching the values
of 45.1426 min, 0.1452 μm, and 0.0193 cm3/N min,

respectively. This result is considered acceptable when
comparing it to the results regarding other hardened
steels reported in literature [4–16, 30]. The optimal cod-
ed values of the decision variables are Vc = 0.1250,
f = −0.0193, and d = −0.1109. The coded values were
transformed in uncoded values by the use of Eq. 37.
Thus, the optimal values of decision variables are
Vc = 170.3116 m/min, f = 0.1588 mm/rev, and
d = 0.2300 mm.

Figure 11 shows the Pareto frontier built using the NBI
method, with the optimal highlighted. The data presented in
Table 5 have been used to build Fig. 11.

In Fig. 11, it has been shown that the Pareto optimal points
on the frontier are evenly distributed. Moreover, we can find
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in Fig. 11 the most preferred Pareto optimal point, as the final
solution for the MOP. Table 7 shows the confidence intervals
for the responses associated to the optimal point. Equation 15
is used, and the adopted probability is 95 %, i.e., α=5%.

From the variability point of view, the final solution
obtained with the maximization of ξ metric is the robust
one, since this metric leads the solution to a region of
minimum variance, less variability, and greater reliabili-
ty. However, the confidence interval of Ra is higher
than the other responses. It proves that Ra is the most
difficult parameter to control in the analyzed process.

Figure 12 shows the overlap of the different objective func-
tions defining the feasible region for the problem.

Figure 12 shows the conflicting nature between MRR/
Fc and the other responses. An increase in MRR/Fc
leads to a decrease in T and to an increase in Ra. In
this work, the optimal point was chosen based on the
maximization of ξ metric and it has been proved that
this point is the robust one.

7 Conclusions

In this paper, the process of AISI H13 hardened steel
turning with PCBN wiper tool was analyzed. The NBI
method was used to simultaneously optimize tool life
(T), surface roughness parameter (Ra), and the ratio be-
tween material removal rate and cutting force (MRR/Fc).
By using this method, it was possible to build an evenly
distributed Pareto frontier for the three responses, re-
gardless the functions convexity.
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Table 7 Confidence intervals

Responses Lower limit Mean Upper limit

T 41.4313 45.1426 48.8539

Ra 0.1045 0.1452 0.1860

MRR/Fc 0.0167 0.0193 0.0220 Vc
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Fig. 12 Point of optimization for T, Ra, and MRR/Fc
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The mathematical model for responses presented an
acceptable fitting proving the functions adequacy. Some
relevant results were obtained as follows: it has been
shown the synergistic effect between cutting speed
(Vc), feed rate ( f ), and depth of cut (d) in the produc-
tivity parameter MRR/Fc; the variable Vc has been iden-
tified as the most significant factor in decreasing T; the
variable f has been identified as the most significant for
Ra variation, though Vc be also significant; the variable
Vc has been identified as the most significant factor in
increasing MRR/Fc, though f be also significant; and,
among the analyzed responses, d is a significant factor
only for MRR/Fc.

An entropic measure, the weighting metric ξ, was
used to select the most preferred Pareto optimal point
as the final solution. These decision-making criteria
proved to be useful in mapping regions of minimum
variance within the Pareto optimal responses obtained
in the optimization process. Thus, the study was able
to demons t r a t e tha t the we igh t s used in the
multiobjective optimization process influence the predic-
tion variance of obtained response. Furthermore, the
study was able to prove the robustness of the multiple
criteria decision making employed to choose the final
solution. It is noticed that the benefits of this weighting
based in entropy is even more useful in estimated
models, such as surface models, because it reduces the
forecast error.

The simultaneous optimal values for the objective
functions are T = 45.1426 min, Ra = 0.1452 μm, and
MRR/Fc = 0.0193 cm3/N min. Such results were obtain-
ed with the following combination of process parame-
ters: Vc = 170.3116 m/min, f = 0.1588 mm/rev, and
d = 0.2300 mm. Analyzing the responses’ confidence
interval, the Ra has greater variability being the most
difficult parameter to control in the analyzed process.
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